Guidelines for the Prevention and Treatment of Opportunistic Infections Among HIV-Exposed and HIV-Infected Children Downloaded from http://aidsinfo.nih.gov/guidelines on 12/21/2016 Visit the AIDS*info* website to access the most up-to-date guideline. Register for e-mail notification of guideline updates at http://aidsinfo.nih.gov/e-news. ## **Cryptosporidiosis** (Last updated November 6, 2013; last reviewed November 6, 2013) #### **Panel's Recommendations** - Reduce risk of Cryptosporidium infection by avoiding drinking water from public swimming pools and other bodies of recreational water (AIII), touching farm animals (BIII), and having contact with known Cryptosporidium-infected individuals (AIII). - Combination antiretroviral therapy (cART) to prevent or reverse severe immune deficiency is the primary modality for preventing chronic *Cryptosporidium* infection in HIV-infected children (AII*). - Effective cART is the primary initial treatment for Cryptosporidium infections in HIV-infected children and adults (AII*). - Nitazoxanide can be considered in immunocompromised HIV-infected children in conjunction with cART for treatment of *Cryptosporidium* infection (BII*). - Supportive care with hydration, correction of electrolyte abnormalities, and nutritional supplementation should be provided (AIII). **Rating of Recommendations:** A = Strong; B = Moderate; C = Optional Rating of Evidence: I = One or more randomized trials <u>in children</u>[†] with clinical outcomes and/or validated endpoints; I* = One or more randomized trials <u>in adults</u> with clinical outcomes and/or validated laboratory endpoints with accompanying data <u>in children</u>[†] from one or more well-designed, nonrandomized trials or observational cohort studies with long-term clinical outcomes; II = One or more well-designed, nonrandomized trials or observational studies <u>in children</u>[†] with long-term outcomes; II* = One or more well-designed, nonrandomized trials or observational studies <u>in adults</u> with long-term clinical outcomes with accompanying data <u>in children</u>[†] from one or more similar nonrandomized trials or cohort studies with clinical outcome data; III = Expert opinion † Studies that include children or children/adolescents, but not studies limited to post-pubertal adolescents ## **Epidemiology** *Cryptosporidium* spp. are protozoan parasites that primarily cause enteric illness (i.e., diarrhea) in humans and animals. They have worldwide distribution and lack host specificity. The two species that infect humans most frequently are *Cryptosporidium hominis* and *Cryptosporidium parvum*. In addition, infections caused by *Cryptosporidium meleagridis*, *Cryptosporidium felis*, and *Cryptosporidium canis* have been reported in HIV-infected patients. Among HIV-infected adults, risk of morbidity associated with *Cryptosporidium* infection is greatest in those with advanced immunosuppression, typically CD4 T-lymphocyte cell (CD4) counts <100/mm³. ¹⁻³ *Cryptosporidium* primarily infects the small intestine, but in immunocompromised hosts, extra-intestinal involvement has been documented. Infection occurs after ingestion of infectious oocysts that were excreted in the feces of infected animals and humans. The parasite is highly infectious, with an ID₅₀ (median dose that will infect 50% of those exposed to the parasite) ranging from 9 to 1042 oocysts, depending on the *C. parvum* isolate,⁴ and 10 to 83 oocysts for *C. hominis*.⁵ Infection occurs when the ingested oocyst releases sporozoites, which attach to and invade the intestinal epithelial cells. The parasite preferentially infects the jejunum and ileum. Contact with infected individuals (particularly diapered children or in the child care setting) or infected animals (particularly pre-weaned calves) is an important cryptosporidiosis risk factor.^{6,7} *Cryptosporidium* oocysts can contaminate recreational water sources (such as swimming pools and lakes) and drinking water supplies and cause infection when contaminated water is ingested. Oocysts are environmentally hardy and extremely chlorine tolerant. They can persist for days in swimming pools despite standard chlorination, and typical pool filtration systems are only partially effective in removing oocysts. Multi-step treatment processes are often used to remove (i.e., filter) and inactivate (i.e., ultraviolet treatment) oocysts to protect public drinking water supplies. Foodborne transmission, particularly involving unpasteurized apple cider and ill food handlers, has been documented and individuals traveling internationally also may be at risk if they drink water in countries where water processing is not as strict as in the United States. Guidelines for Prevention and Treatment of Opportunistic Infections in HIV-Infected Adults and Adolescents In a serosurvey of multiple U.S. cities, 21.3% of children aged <10 years and 21.5% of those aged 11 to 20 years had detectable response to *Cryptosporidium* antigen.⁸ Among immunocompetent pediatric patients with diarrhea, 38% of those aged 5 to 13 years and 58% of those aged 14 to 21 years were seropositive for *Cryptosporidium* antibodies, compared with >80% of children aged 6 months to 13 years who resided near the U.S.–Mexican border and were seeking well-child care.^{9,10} The incidence of reported cryptosporidiosis in the United States has dramatically increased since 2004, peaking at 4 cases per 100,000 people in 2007.¹¹ Cases are most frequently reported in children aged 1 to 4 years, followed by those aged 5 to 9 years. However, cryptosporidiosis is a highly underdiagnosed and underreported diarrheal illness. Infected patients can be asymptomatic, those with symptoms may not seek healthcare, healthcare providers may not request laboratory diagnostics when evaluating non-bloody diarrhea, requested ova and parasite testing may not include *Cryptosporidium* testing, and positive laboratory results are not always reported to public health officials.¹² Before effective antiretroviral therapy became available, most HIV-infected patients diagnosed with cryptosporidiosis had advanced disease or AIDS. The incidence of cryptosporidiosis in HIV-infected patients has declined dramatically since the introduction of combination antiretroviral therapy (cART). During the pre-cART era, the rate of cryptosporidiosis was 0.6 cases per 100 patient-years in children with a median age of 5.9 years and median CD4 count of 51/mm³ who were followed on 13 Pediatric AIDS Clinical Trial Group (PACTG) protocols. Data from the Perinatal AIDS Collaborative Transmission Study indicate that the rate of chronic intestinal cryptosporidiosis decreased from 0.2 cases per 100 person-years in the pre-cART era to 0.0 cases per 100 person-years in the post-cART era. The PACTG estimates that the mortality rate in HIV-infected children significantly decreased from 7.2 to 0.8 per 100 person-years between 1994 and 2000 and subsequently stabilized through 2006. The proportion of deaths due to all opportunistic infections decreased between 1994 and 2006, with declines most notable in deaths caused by *Cryptosporidium* and *Mycobacterium avium* complex (MAC). #### **Clinical Manifestations** Symptoms of cryptosporidiosis develop after an incubation period of approximately 1 week (range, 2–14 days). Diarrhea—which can be profuse, usually non-bloody, and watery—and weight loss, abdominal pain, anorexia, fatigue, joint pain, headache, fever, and vomiting have been reported in immunocompetent children and adults infected with *Cryptosporidium*.¹⁹ In immunocompetent hosts, illness is self-limiting, and symptoms most often completely resolve within 2 to 3 weeks. Recurrence of symptoms after seeming resolution often has been reported. Clinical presentation of cryptosporidiosis in HIV-infected patients varies with level of immunosuppression, ranging from no symptoms or transient disease to relapsing/chronic diarrhea or cholera-like diarrhea, which can lead to life-threatening wasting and malabsorption.²⁰ In immunocompromised children, chronic severe diarrhea can result in malnutrition, failure to thrive, and substantial intestinal fluid losses, resulting in severe dehydration and even death. Different *Cryptosporidium* spp. and genotypes are associated with different clinical manifestations in children and HIV-infected adults; vomiting is associated with *C. hominis* infection in children and *C. parvum* infection in adults.^{21,22} Neither clinical history nor physical examination allows differentiation of cryptosporidial disease from that caused by other pathogens. Biliary tract disease is associated with CD4 counts ≤50/mm³.²³ Symptoms and signs include fever, right upper abdominal pain, nausea, vomiting, and elevated alkaline phosphatase. Diagnostic studies show dilatation of the common bile duct, thickening of the gall bladder wall, and pericholecystic fluid collection. Pancreatitis is rare. Although infection usually is limited to the gastrointestinal (GI) tract, respiratory cryptosporidiosis has been reported with no pathogen other than *Cryptosporidium* being detected in sputum.^{24,25} ## **Diagnosis** Healthcare providers should specifically request *Cryptosporidium* testing, because standard ova and parasite testing is unlikely to include *Cryptosporidium* spp. Performance of diagnostic tests has not been extensively evaluated in HIV-infected children but is expected to be similar to that in HIV-uninfected children. Monoclonal antibody-based direct fluorescent antibody assay is the current test of choice for diagnosis of cryptosporidiosis because of enhanced sensitivity and specificity.^{26,27} Antigen-detection assays that have good sensitivity and specificity are available commercially (such as enzyme-linked immunosorbent assay [EIA] and immunochromatography).^{28,29} Oocyst excretion can be intermittent; therefore, the parasite may not be detected in every stool, and stool specimens collected on 3 consecutive days should be examined before considering test results to be negative. With EIA and rapid test methods, false-positive and false-negative results can occur, and confirmation by microscopy should be considered. If oocysts are not detected in stool specimens and if suspicion is high for cryptosporidiosis or limited oocyst excretion, polymerase chain reaction (PCR)-based detection is recommended because of its increased sensitivity. PCR for *Cryptosporidium* is not commercially available; healthcare providers should contact the state health department or Centers for Disease Control and Prevention if PCR-based detection is needed. Genotyping and subtyping tools are being increasingly used to differentiate *Cryptosporidium* species in outbreak investigations and infection/contamination source tracking. *Cryptosporidium* isolates cannot be reliably genotyped/subtyped if stool is preserved in formalin. #### **Prevention Recommendations** ## **Preventing Exposure** Caregivers and HIV-infected children should be educated and counseled about the different ways *Cryptosporidium* can be transmitted **(AIII)**. Modes of transmission include having direct contact with fecal material from infected individuals (particularly children who wear diapers and infected animals), ingesting contaminated water during recreational activities, drinking contaminated water; and eating contaminated food. Hand washing is probably the most important step to reduce the risk of *Cryptosporidium* infection (AIII). HIV-infected children should always wash their hands before preparing or eating food; after contact with children in diapers; after contact with clothing, bedding, toilets, or diapers soiled by someone who has diarrhea; after touching pets or other animals; and after touching anything that may have had contact with even the smallest amounts of human or animal feces (such as sand in a sandbox). HIV-infected children should avoid contact with pre-weaned calves, ill animals, young animals (particularly dogs and cats aged <6 months and lambs), stray animals and stool from any animals or surfaces known to be contaminated with human or animal feces (AIII). HIV-infected children should avoid petting zoos and animal areas at farms and camps (BIII). After visiting an area with animals, an immunocompetent caregiver should clean the children's shoes and other surfaces that can become contaminated (such as clothes and stroller wheels). HIV-infected children should avoid drinking water directly from ponds, streams, springs, lakes, or rivers, or swallowing water they swim or play in regardless of whether it is chlorinated (AIII). Caregivers and HIV-infected children should be aware that recreational water, including lakes, rivers, salt-water beaches, swimming pools, water parks, hot tubs, and interactive and ornamental water fountains may be contaminated with human or animal feces that contain *Cryptosporidium*. Note that children aged <6 years should not use a hot tub. Some outbreaks of cryptosporidiosis have been linked to ingestion of water from contaminated municipal water supplies; the incidence of these outbreaks has dramatically decreased since the mid-1990s because of improved water treatment targeting the inactivation and removal of *Cryptosporidium*. To eliminate risk of cryptosporidiosis during outbreaks or in other situations in which a community advisory to boil water is issued, heat water used for preparing infant formula, drinking, and making ice at a rolling boil for 1 minute (AIII). After the boiled water cools, put it in a clean bottle or pitcher with a lid and store it in the refrigerator. Water bottles and ice trays should be cleaned with soap and water before each use. Do not touch the inside of these containers after cleaning. Nationally distributed brands of bottled or canned carbonated soft drinks are safe to drink. Commercially packaged, non-carbonated soft drinks and fruit juices that do not require refrigeration until after they are opened (i.e., those which can be stored unrefrigerated on grocery shelves) also are safe. Nationally distributed brands of frozen fruit juice concentrate are safe if they are reconstituted by the user with water from a safe water source. Fruit juices that must be kept refrigerated from the time they are processed to the time of consumption may be either fresh (i.e., unpasteurized) or heat-treated (i.e., pasteurized); only juices labeled as pasteurized should be considered free of risk from *Cryptosporidium*. Other pasteurized beverages, such as milk, also are considered safe to drink (BIII). *Cryptosporidium*-infected patients should not work as food handlers, especially if the handled food is intended to be eaten without cooking (AIII). When traveling internationally, particularly in low-resource settings, HIV-infected patients should be warned to avoid drinking tap water and not to use it to brush teeth. Ingesting ice that may be made from tap water and raw fruits and vegetables should also be avoided (BIII). Steaming-hot foods, self-peeled fruits, bottled and canned processed drinks, and hot coffee or hot tea are probably safe. In a hospital, standard precautions (such as the use of gloves and hand-washing after removal of gloves) should be sufficient to prevent transmission of cryptosporidiosis from an infected patient to a susceptible HIV-infected individual (AIII). However, because of the potential for fomite transmission, some experts recommend that severely immunocompromised HIV-infected patients should not share a room with a patient with cryptosporidiosis (CIII). A recent report suggests that there may be potential for respiratory transmission of *Cryptosporidium*.²⁵ However, no specific modifications of current prevention efforts have been suggested. HIV-infected adolescents who are sexually active should be counseled about avoiding sexual practices that could result in oral exposure to feces (such as oral-anal contact). To reduce the risk of exposure to feces, adolescents should use dental dams or similar barrier methods for oral-anal and oral-genital contact, wear latex gloves during digital-anal contact, and change condoms after anal intercourse. Frequent washing of hands and genitals with warm, soapy water during and after activities that could bring these body parts in contact with feces may further reduce the risk of *Cryptosporidium* infection. ## Preventing Disease Because chronic *Cryptosporidium* infection occurs most often in HIV-infected patients with advanced immunodeficiency, cART for HIV-infected children to prevent or reverse severe immune deficiency is a primary modality for prevention **(AII)**. Observational studies from the pre-cART era suggested that rifabutin or clarithromycin prophylaxis for MAC might be associated with decreased rates or risk of cryptosporidiosis.³²⁻³⁴ However, data are conflicting and insufficient to recommend using these drugs solely for prophylaxis of cryptosporidiosis. #### Discontinuing Primary Prophylaxis Not applicable. #### **Treatment Recommendations** ## Treating Disease Immune reconstitution resulting from cART often results in clearance of *Cryptosporidium* infection. Effective cART is the primary initial treatment for these infections in HIV-infected children and adults (AII*). ^{14,35} *In vitro* and observational studies, some of which are case series, suggest that cART containing a protease inhibitor (PI) may be preferable because of a direct effect of the PI on the parasite. ³⁵⁻⁴⁴ PIs increase production of interferon-gamma, which in turn inhibits *Cryptosporidium* infection. Supportive care with hydration, correction of electrolyte abnormalities, and nutritional supplementation should be provided (AIII). Antimotility agents to combat malabsorption of nutrients and drugs should be used with caution (CIII). No consistently effective therapy is available for cryptosporidiosis, and duration of treatment in HIV-infected patients is uncertain. 45,46 Multiple agents have been investigated in small randomized controlled clinical trials of HIV-infected adults, including nitazoxanide, paromomycin, spiramycin, bovine hyperimmune colostrum, and bovine dialyzable leukocyte extract. Azithromycin and roxithromycin have also been investigated in small open-label studies. 47 No pharmacologic or immunologic therapy directed specifically against *C. parvum* has yet been shown consistently effective and durable when used alone without concomitant cART. 45,46 A review of clinical trials of treatment for Cryptosporidia in immunocompromised patients, including those with HIV infection, found that no agent has proven efficacy for treating cryptosporidiosis in immunocompromised patients; however, in immunocompetent individuals, nitazoxanide reduces the load of parasites. Given the seriousness of this infection in immunocompromised individuals, use of nitazoxanide can be considered in immunocompromised HIV-infected children in conjunction with cART for immune restoration (BII*). 45,46 Given that cART may directly inhibit the parasite, it is possible that the combination of cART and parasitic therapy may be synergistic. Nitazoxanide is approved in the United States to treat diarrhea caused by Cryptosporidium and Giardia lamblia in children and is available in liquid and tablet formulations (BI for HIV-uninfected children and **BII*** for HIV-infected children). An Egyptian clinical trial in 100 HIV-uninfected adults and children randomized patients to a 3-day course of nitazoxanide or placebo. 48 Nitazoxanide therapy reduced the duration of both diarrhea and oocyst shedding; in children, clinical response was 88% with nitazoxanide and 38% with placebo. No severe adverse events were reported, and adverse events that were reported were similar in the treatment and placebo groups in this study. A study in Zambia in 100 malnourished children (half of whom were HIV-infected) aged 12 to 35 months reported a clinical response in 56% of HIVuninfected children treated with nitazoxanide, compared with 23% receiving placebo. 49 However, in the HIV-infected children, no benefit was observed from nitazoxanide (clinical response in 8% treated with nitazoxanide, compared with 25% receiving placebo). In a subsequent study of 60 HIV-infected children with cryptosporidiosis, the same investigators reported no significant benefit using twice the recommended dose administered for 28 days.⁵⁰ It should be noted that the children in the Zambian studies were not receiving cART. In a study in HIV-infected adults not receiving cART who had CD4 counts >50 cells/mm³, 14 days of nitazoxanide resulted in 71% (10 of 14) response using 500 mg twice daily and 90% (9 of 10) using 1000 mg twice daily, compared with 25% with placebo.⁵¹ The recommended dose for children is 100 mg orally twice daily for children aged 1 to 3 years and 200 mg twice daily for children aged 4 to 11 years. A tablet preparation (500 mg twice daily) is available for children aged ≥12 years. All medications should be administered with food. Paromomycin, a non-absorbable aminoglycoside indicated for the treatment of intestinal amoebiasis, is not approved for treatment of cryptosporidiosis. Two small, randomized trials evaluating the efficacy of paromomycin for treatment of HIV-infected patients found clinical improvement or reduced oocyst excretion in those treated with paromomycin.^{52,53} A review of reports of paromomycin treatment in HIV-infected patients found repeated failure to cure.⁵⁴ Therefore, data do not support a recommendation for use of paromomycin for cryptosporidiosis (BII*). Clinical or parasitological cure has been documented with use of paromomycin and azithromycin in combination in case series of HIV-infected patients with cryptosporidial diarrhea and case reports of HIV-infected patients with pulmonary cryptosporidiosis.⁵⁵⁻⁵⁷ ## Monitoring and Adverse Events, Including IRIS Patients should be closely monitored for signs and symptoms of volume depletion, electrolyte imbalance, malnutrition, and weight loss. In severely ill patients, total parenteral nutrition may be indicated (CIII). One case report describes immune reconstitution inflammatory syndrome, specifically terminal ileitis, in association with treatment of cryptosporidiosis.⁵⁸ In general, nitazoxanide is well tolerated and side effects are mild, transient, and limited to the GI tract. Guidelines for the Prevention and Treatment of Opportunistic Infections In HIV-Exposed and HIV-Infected Children #### Managing Treatment Failure The most important steps for managing treatment failure are optimizing cART to increase CD4 counts and providing supportive treatment (AIII). #### Preventing Recurrence No pharmacologic interventions are known to be effective in preventing recurrence of cryptosporidiosis. #### Discontinuing Secondary Prophylaxis Not applicable. #### References - 1. Flanigan T, Whalen C, Turner J, et al. Cryptosporidium infection and CD4 counts. *Ann Intern Med.* May 15 1992;116(10):840-842. Available at http://www.ncbi.nlm.nih.gov/pubmed/1348918. - 2. Sorvillo F, Beall G, Turner PA, et al. Seasonality and factors associated with cryptosporidiosis among individuals with HIV infection. *Epidemiol Infect*. Aug 1998;121(1):197-204. Available at http://www.ncbi.nlm.nih.gov/pubmed/9747773. - 3. Inungu JN, Morse AA, Gordon C. Risk factors, seasonality, and trends of cryptosporidiosis among patients infected with human immunodeficiency virus. *Am J Trop Med Hyg*. Mar 2000;62(3):384-387. Available at http://www.ncbi.nlm.nih.gov/pubmed/11037782. - 4. Okhuysen PC, Chappell CL, Crabb JH, Sterling CR, DuPont HL. Virulence of three distinct Cryptosporidium parvum isolates for healthy adults. *J Infect Dis*. Oct 1999;180(4):1275-1281. Available at http://www.ncbi.nlm.nih.gov/pubmed/10479158. - 5. Chappell CL, Okhuysen PC, Langer-Curry R, et al. Cryptosporidium hominis: experimental challenge of healthy adults. *Am J Trop Med Hyg.* Nov 2006;75(5):851-857. Available at http://www.ncbi.nlm.nih.gov/pubmed/17123976. - 6. Heijbel H, Slaine K, Seigel B, et al. Outbreak of diarrhea in a day care center with spread to household members: the role of Cryptosporidium. *Pediatr Infect Dis J.* Jun 1987;6(6):532-535. Available at http://www.ncbi.nlm.nih.gov/pubmed/3615068. - 7. O'Connor R M, Shaffie R, Kang G, Ward HD. Cryptosporidiosis in patients with HIV/AIDS. *AIDS*. Mar 13 2011;25(5):549-560. Available at http://www.ncbi.nlm.nih.gov/pubmed/21160413. - 8. Frost FJ, Muller TB, Calderon RL, Craun GF. Analysis of serological responses to Cryptosporidium antigen among NHANES III participants. *Annals of epidemiology*. Aug 2004;14(7):473-478. Available at http://www.ncbi.nlm.nih.gov/pubmed/15310525. - 9. Kuhls TL, Mosier DA, Crawford DL, Griffis J. Seroprevalence of cryptosporidial antibodies during infancy, childhood, and adolescence. *Clin Infect Dis.* May 1994;18(5):731-735. Available at http://www.ncbi.nlm.nih.gov/pubmed/8075261. - 10. Leach CT, Koo FC, Kuhls TL, Hilsenbeck SG, Jenson HB. Prevalence of Cryptosporidium parvum infection in children along the Texas-Mexico border and associated risk factors. *Am J Trop Med Hyg*. May 2000;62(5):656-661. Available at http://www.ncbi.nlm.nih.gov/pubmed/11289680. - 11. Yoder JS, Harral C, Beach MJ, Centers for Disease C, Prevention. Giardiasis surveillance—United States, 2006-2008. MMWR Surveill Summ. Jun 11 2010;59(6):15-25. Available at http://www.ncbi.nlm.nih.gov/pubmed/20535095. - 12. Yoder JS, Beach MJ. Cryptosporidium surveillance and risk factors in the United States. *Exp Parasitol*. Jan 2010;124(1):31-39. Available at http://www.ncbi.nlm.nih.gov/pubmed/19786022. - 13. Huang DB, White AC. An updated review on Cryptosporidium and Giardia. *Gastroenterol Clin North Am*. Jun 2006;35(2):291-314, viii. Available at http://www.ncbi.nlm.nih.gov/pubmed/16880067. - 14. Chen XM, Keithly JS, Paya CV, LaRusso NF. Cryptosporidiosis. *N Engl J Med*. May 30 2002;346(22):1723-1731. Available at http://www.ncbi.nlm.nih.gov/pubmed/12037153. - 15. Buchacz K, Baker RK, Palella FJ, Jr., et al. AIDS-defining opportunistic illnesses in US patients, 1994-2007: a cohort study. *AIDS*. Jun 19 2010;24(10):1549-1559. Available at http://www.ncbi.nlm.nih.gov/pubmed/20502317. - 16. Dankner WM, Lindsey JC, Levin MJ, Pediatric ACTGPT. Correlates of opportunistic infections in children infected with the human immunodeficiency virus managed before highly active antiretroviral therapy. *Pediatr Infect Dis J.* Jan - 2001;20(1):40-48. Available at http://www.ncbi.nlm.nih.gov/pubmed/11176565. - 17. Nesheim SR, Kapogiannis BG, Soe MM, et al. Trends in opportunistic infections in the pre- and post-highly active antiretroviral therapy eras among HIV-infected children in the Perinatal AIDS Collaborative Transmission Study, 1986-2004. *Pediatrics*. Jul 2007;120(1):100-109. Available at http://www.ncbi.nlm.nih.gov/pubmed/17606567. - 18. Brady MT, Oleske JM, Williams PL, et al. Declines in mortality rates and changes in causes of death in HIV-1-infected children during the HAART era. *J Acquir Immune Defic Syndr*. Jan 2010;53(1):86-94. Available at http://www.ncbi.nlm.nih.gov/pubmed/20035164. - 19. Hunter PR, Hughes S, Woodhouse S, et al. Health sequelae of human cryptosporidiosis in immunocompetent patients. *Clin Infect Dis.* Aug 15 2004;39(4):504-510. Available at http://www.ncbi.nlm.nih.gov/pubmed/15356813. - 20. Hunter PR, Nichols G. Epidemiology and clinical features of Cryptosporidium infection in immunocompromised patients. *Clin Microbiol Rev.* Jan 2002;15(1):145-154. Available at http://www.ncbi.nlm.nih.gov/pubmed/11781272. - 21. Cama VA, Ross JM, Crawford S, et al. Differences in clinical manifestations among Cryptosporidium species and subtypes in HIV-infected persons. *J Infect Dis*. Sep 1 2007;196(5):684-691. Available at http://www.ncbi.nlm.nih.gov/pubmed/17674309. - 22. Cama VA, Bern C, Roberts J, et al. Cryptosporidium species and subtypes and clinical manifestations in children, Peru. *Emerg Infect Dis.* Oct 2008;14(10):1567-1574. Available at http://www.ncbi.nlm.nih.gov/pubmed/18826821. - 23. Vakil NB, Schwartz SM, Buggy BP, et al. Biliary cryptosporidiosis in HIV-infected people after the waterborne outbreak of cryptosporidiosis in Milwaukee. *N Engl J Med*. Jan 4 1996;334(1):19-23. Available at http://www.ncbi.nlm.nih.gov/pubmed/7494565. - 24. Clavel A, Arnal AC, Sanchez EC, et al. Respiratory cryptosporidiosis: case series and review of the literature. *Infection*. Sep-Oct 1996;24(5):341-346. Available at http://www.ncbi.nlm.nih.gov/pubmed/8923043. - 25. Mor SM, Tumwine JK, Ndeezi G, et al. Respiratory cryptosporidiosis in HIV-seronegative children in Uganda: potential for respiratory transmission. *Clin Infect Dis*. May 15 2010;50(10):1366-1372. Available at http://www.ncbi.nlm.nih.gov/pubmed/20377408. - 26. Weber R, Bryan RT, Bishop HS, Wahlquist SP, Sullivan JJ, Juranek DD. Threshold of detection of Cryptosporidium oocysts in human stool specimens: evidence for low sensitivity of current diagnostic methods. *J Clin Microbiol*. Jul 1991;29(7):1323-1327. Available at http://www.ncbi.nlm.nih.gov/pubmed/1715881. - 27. Arrowood MJ, Sterling CR. Comparison of conventional staining methods and monoclonal antibody-based methods for Cryptosporidium oocyst detection. *J Clin Microbiol*. Jul 1989;27(7):1490-1495. Available at http://www.ncbi.nlm.nih.gov/pubmed/2475523. - 28. Garcia LS, Shimizu RY. Evaluation of nine immunoassay kits (enzyme immunoassay and direct fluorescence) for detection of Giardia lamblia and Cryptosporidium parvum in human fecal specimens. *J Clin Microbiol*. Jun 1997;35(6):1526-1529. Available at http://www.ncbi.nlm.nih.gov/pubmed/9163474. - 29. Garcia LS, Shimizu RY, Novak S, Carroll M, Chan F. Commercial assay for detection of Giardia lamblia and Cryptosporidium parvum antigens in human fecal specimens by rapid solid-phase qualitative immunochromatography. *J Clin Microbiol*. Jan 2003;41(1):209-212. Available at http://www.ncbi.nlm.nih.gov/pubmed/12517850. - van Gool T, Weijts R, Lommerse E, Mank TG. Triple Faeces Test: an effective tool for detection of intestinal parasites in routine clinical practice. *Eur J Clin Microbiol Infect Dis*. May 2003;22(5):284-290. Available at http://www.ncbi.nlm.nih.gov/pubmed/12736794. - 31. McLauchlin J, Amar CF, Pedraza-Diaz S, Mieli-Vergani G, Hadzic N, Davies EG. Polymerase chain reaction-based diagnosis of infection with Cryptosporidium in children with primary immunodeficiencies. *Pediatr Infect Dis J*. Apr 2003;22(4):329-335. Available at http://www.ncbi.nlm.nih.gov/pubmed/12690272. - 32. Holmberg SD, Moorman AC, Von Bargen JC, et al. Possible effectiveness of clarithromycin and rifabutin for cryptosporidiosis chemoprophylaxis in HIV disease. HIV Outpatient Study (HOPS) Investigators. *JAMA*. Feb 4 1998;279(5):384-386. Available at http://www.ncbi.nlm.nih.gov/pubmed/9459473. - 33. Fichtenbaum CJ, Zackin R, Feinberg J, Benson C, Griffiths JK, Team ACTGNWCS. Rifabutin but not clarithromycin prevents cryptosporidiosis in persons with advanced HIV infection. *AIDS*. Dec 22 2000;14(18):2889-2893. Available at http://www.ncbi.nlm.nih.gov/pubmed/11153670. - 34. Jordan WC. Clarithromycin prophylaxis against Cryptosporidium enteritis in patients with AIDS. Journal of the - National Medical Association. Jul 1996;88(7):425-427. Available at http://www.ncbi.nlm.nih.gov/pubmed/8764523. - 35. Miao YM, Awad-El-Kariem FM, Franzen C, et al. Eradication of cryptosporidia and microsporidia following successful antiretroviral therapy. *J Acquir Immune Defic Syndr*. Oct 1 2000;25(2):124-129. Available at http://www.ncbi.nlm.nih.gov/pubmed/11103042. - 36. Hommer V, Eichholz J, Petry F. Effect of antiretroviral protease inhibitors alone, and in combination with paromomycin, on the excystation, invasion and in vitro development of Cryptosporidium parvum. *J Antimicrob Chemother*. Sep 2003;52(3):359-364. Available at http://www.ncbi.nlm.nih.gov/pubmed/12888587. - 37. Mele R, Gomez Morales MA, Tosini F, Pozio E. Indinavir reduces Cryptosporidium parvum infection in both in vitro and in vivo models. *Int J Parasitol*. Jul 2003;33(7):757-764. Available at http://www.ncbi.nlm.nih.gov/pubmed/12814654. - 38. Maggi P, Larocca AM, Quarto M, et al. Effect of antiretroviral therapy on cryptosporidiosis and microsporidiosis in patients infected with human immunodeficiency virus type 1. *Eur J Clin Microbiol Infect Dis*. Mar 2000;19(3):213-217. Available at http://www.ncbi.nlm.nih.gov/pubmed/10795595. - 39. Cabada MM, White AC, Jr. Treatment of cryptosporidiosis: do we know what we think we know? *Curr Opin Infect Dis*. Oct 2010;23(5):494-499. Available at http://www.ncbi.nlm.nih.gov/pubmed/20689422. - 40. Maggi P, Larocca AM, Ladisa N, et al. Opportunistic parasitic infections of the intestinal tract in the era of highly active antiretroviral therapy: is the CD4(+) count so important? *Clin Infect Dis.* Nov 1 2001;33(9):1609-1611. Available at http://www.ncbi.nlm.nih.gov/pubmed/11588705. - 41. Miao YM, Awad-El-Kariem FM, Gibbons CL, Gazzard BG. Cryptosporidiosis: eradication or suppression with combination antiretroviral therapy? *AIDS*. Apr 16 1999;13(6):734-735. Available at http://www.ncbi.nlm.nih.gov/pubmed/10397573. - 42. Bobin S, Bouhour D, Durupt S, Boibieux A, Girault V, Peyramond D. [Importance of antiproteases in the treatment of microsporidia and/or cryptosporidia infections in HIV-seropositive patients]. *Pathologie-biologie*. Jun 1998;46(6):418-419. Available at http://www.ncbi.nlm.nih.gov/pubmed/9769873. - 43. Foudraine NA, Weverling GJ, van Gool T, et al. Improvement of chronic diarrhoea in patients with advanced HIV-1 infection during potent antiretroviral therapy. *AIDS*. Jan 1 1998;12(1):35-41. Available at http://www.ncbi.nlm.nih.gov/pubmed/9456253. - Carr A, Marriott D, Field A, Vasak E, Cooper DA. Treatment of HIV-1-associated microsporidiosis and cryptosporidiosis with combination antiretroviral therapy. *Lancet*. Jan 24 1998;351(9098):256-261. Available at http://www.ncbi.nlm.nih.gov/pubmed/9457096. - 45. Abubakar I, Aliyu SH, Arumugam C, Hunter PR, Usman NK. Prevention and treatment of cryptosporidiosis in immunocompromised patients. *Cochrane Database Syst Rev.* 2007(1):CD004932. Available at http://www.ncbi.nlm.nih.gov/pubmed/17253532. - Abubakar I, Aliyu SH, Arumugam C, Usman NK, Hunter PR. Treatment of cryptosporidiosis in immunocompromised individuals: systematic review and meta-analysis. *Br J Clin Pharmacol*. Apr 2007;63(4):387-393. Available at http://www.ncbi.nlm.nih.gov/pubmed/17335543. - 47. Rossignol JF. Cryptosporidium and Giardia: treatment options and prospects for new drugs. *Exp Parasitol*. Jan 2010;124(1):45-53. Available at http://www.ncbi.nlm.nih.gov/pubmed/19632225. - 48. Rossignol JF, Ayoub A, Ayers MS. Treatment of diarrhea caused by Cryptosporidium parvum: a prospective randomized, double-blind, placebo-controlled study of Nitazoxanide. *J Infect Dis.* Jul 1 2001;184(1):103-106. Available at http://www.ncbi.nlm.nih.gov/pubmed/11398117. - 49. Amadi B, Mwiya M, Musuku J, et al. Effect of nitazoxanide on morbidity and mortality in Zambian children with cryptosporidiosis: a randomised controlled trial. *Lancet*. Nov 2 2002;360(9343):1375-1380. Available at http://www.ncbi.nlm.nih.gov/pubmed/12423984. - 50. Amadi B, Mwiya M, Sianongo S, et al. High dose prolonged treatment with nitazoxanide is not effective for cryptosporidiosis in HIV positive Zambian children: a randomised controlled trial. *BMC Infect Dis.* 2009;9:195. Available at http://www.ncbi.nlm.nih.gov/pubmed/19954529. - 51. Rossignol JF, Hidalgo H, Feregrino M, et al. A double-'blind' placebo-controlled study of nitazoxanide in the treatment of cryptosporidial diarrhoea in AIDS patients in Mexico. *Trans R Soc Trop Med Hyg.* Nov-Dec 1998;92(6):663-666. Available at http://www.ncbi.nlm.nih.gov/pubmed/10326116. - 52. White AC, Jr., Chappell CL, Hayat CS, Kimball KT, Flanigan TP, Goodgame RW. Paromomycin for cryptosporidiosis in AIDS: a prospective, double-blind trial. *J Infect Dis*. Aug 1994;170(2):419-424. Available at http://www.ncbi.nlm.nih.gov/pubmed/8035029. - 53. Hewitt RG, Yiannoutsos CT, Higgs ES, et al. Paromomycin: no more effective than placebo for treatment of cryptosporidiosis in patients with advanced human immunodeficiency virus infection. AIDS Clinical Trial Group. *Clin Infect Dis.* Oct 2000;31(4):1084-1092. Available at http://www.ncbi.nlm.nih.gov/pubmed/11049793. - 54. Hashmey R, Smith NH, Cron S, Graviss EA, Chappell CL, White AC, Jr. Cryptosporidiosis in Houston, Texas. A report of 95 cases. *Medicine (Baltimore)*. Mar 1997;76(2):118-139. Available at http://www.ncbi.nlm.nih.gov/pubmed/9100739. - 55. Smith NH, Cron S, Valdez LM, Chappell CL, White AC, Jr. Combination drug therapy for cryptosporidiosis in AIDS. *J Infect Dis.* Sep 1998;178(3):900-903. Available at http://www.ncbi.nlm.nih.gov/pubmed/9728569. - 56. Meamar AR, Rezaian M, Rezaie S, et al. Cryptosporidium parvum bovine genotype oocysts in the respiratory samples of an AIDS patient: efficacy of treatment with a combination of azithromycin and paromomycin. *Parasitology research*. May 2006;98(6):593-595. Available at http://www.ncbi.nlm.nih.gov/pubmed/16416289. - 57. Palmieri F, Cicalini S, Froio N, et al. Pulmonary cryptosporidiosis in an AIDS patient: successful treatment with paromomycin plus azithromycin. *Int J STD AIDS*. Jul 2005;16(7):515-517. Available at http://www.ncbi.nlm.nih.gov/pubmed/16004637. - 58. Plasencia LD, Socas Mdel M, Valls RA, Fernandez EM, Higuera AC, Gutierrez AB. Terminal ileitis as a manifestation of immune reconstitution syndrome following HAART. *AIDS*. Sep 11 2006;20(14):1903-1905. Available at http://www.ncbi.nlm.nih.gov/pubmed/16954736. #### Dosing Recommendations for Prevention and Treatment of Cryptosporidiosis | Preventive Regimen | | | | |-----------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Indication | First Choice | Alternative | Comments/Special Issues | | Primary Prophylaxis | ARV therapy to avoid advanced immune deficiency | N/A | N/A | | Secondary Prophylaxis | N/A | N/A | N/A | | Treatment | Effective cART: • Immune reconstitution may lead to microbiologic and clinical response | There is no consistently effective therapy for cryptosporidiosis in HIV-infected individuals; optimized cART and a trial of nitazoxanide can be considered. Nitazoxanide (BI, HIV-Uninfected; BII*, HIV-Infected in Combination with Effective cART): • 1–3 years: Nitazoxanide (20 mg/mL oral solution) 100 mg orally twice daily with food • 4–11 years: Nitazoxanide (20 mg/mL oral solution) 200 mg orally twice daily with food • ≥12 years: Nitazoxanide tablet 500 mg orally twice daily with food Treatment duration: • 3–14 days | Supportive Care: • Hydration, correct electrolyte abnormalities, nutritional support Antimotility agents (such as loperamide) should be used with caution in young children. | Key to Acronyms: ARV = antiretroviral; cART = combination antiretroviral therapy